Equations of Hurwitz Schemes in the Infinite Grassmannian

نویسندگان

  • J. M. MUÑOZ PORRAS
  • F. J. PLAZA
چکیده

The main result proved in the paper is the computation of the explicit equations defining the Hurwitz schemes of coverings with punctures as subschemes of the Sato infinite Grassmannian. As an application, we characterize the existence of certain linear series on a smooth curve in terms of soliton equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virasoro Groups and Hurwitz Schemes

In this paper we study the Hurwitz scheme in terms of the Sato Grassmannian and the algebro-geometric theory of solitons. We will give a characterization, its equations and a show that there is a group of Virasoro type which uniformizes it.

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

Grassmannians, Nonlinear Wave Equations and Generalized Schur Functions

The solution space of the KP hierarchy of nonlinear evolution equations is known to have the geometric structure of an infinite dimensional Grassmannian manifold. This paper demonstrates this fact in an elementary way. Specifically, it is explained how one may use the recently introduced N-Schur functions to “translate” the nonlinear differential equations into the algebraic Plücker relations f...

متن کامل

Existence of solutions of infinite systems of integral equations in the Frechet spaces

In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...

متن کامل

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002